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Models and average properties of scale-free directed networks
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We extend the merging model for undirected networks by Kim er al. [Eur. Phys. J. B 43, 369 (2004)] to
directed networks and investigate the emerging scale-free networks. Two versions of the directed merging
model, friendly and hostile merging, give rise to two distinct network types. We uncover that some nontrivial
features of these two network types resemble two levels of a certain randomization/nonspecificity in the link
reshuffling during network evolution. Furthermore, the same features show up, respectively, in metabolic

networks and transcriptional networks. We introduce measures that single out the distinguishing features
between the two prototype networks, as well as point out features that are beyond the prototypes.
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I. INTRODUCTION

The subject of complex networks has recently caused a
rapid surge of interest and already quite a few reviews have
surfaced [1-5]. While a large effort has been devoted to un-
directed networks, comparatively less attention has been paid
so far on modeling directed networks. On the other hand,
there exist also many different types of real directed net-
works from various realms of science [1-5]. The directed
networks models discussed in the present paper structurally
resemble two examples from biology, i.e., metabolic net-
works [6—10] and transcriptional networks [11-13]. These
two types, while being structurally rather different, both dis-
play a broad out-degree distribution.

The scale-freeness of the degree distributions has been a
central issue in the network research [1-5]. Typical questions
we can ask are as follows: Does the feature of broad degree
distributions observed in real networks suggest a common
cause? Or do the broad distributions arise in a variety of
ways, implying that no common cause exists? Can directed
networks with scale-free degree distributions be subdivided
into “universality classes” based on relations between in- and
out-degrees in the networks?

In the first step, we try to find local organizational update
rules, which automatically generate directed networks with
broad scale-free-like degree distributions. We present two
such local rules, which we term friendly and hostile merging.
We further characterize the two emerging types of directed
scale-free networks by measures connected to the relative
amount of and the relations between in- and outgoing links.
We notice that directed networks have more characteristic
features than undirected ones, which makes it easier to detect
differences between them. Next we introduce two minimal-
istic random network models that display features reminis-
cent of the two types of networks obtained from, respec-
tively, friendly and hostile merging. We clarify the
similarities and differences and suggest that the common
overall features can be described in terms of two distinct
prototypes of directed scale-free-like networks. Finally, we
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compare with two real directed networks, i.e., metabolic net-
works and transcriptional networks, and discuss the similari-
ties and differences.

II. FRIENDLY AND HOSTILE MERGING

Recently Kim et al. in Ref. [14] constructed a local update
rule of merging type for undirected networks that automati-
cally gives rise to scale-free degree distributions. Here we
extend this local merging evolution to directed networks and
describe and discuss two alternatives called friendly and hos-
tile merging.

Friendly merging

Friendly merging is an example of a local update that
automatically gives rise to scale-freeness and, as we will
discuss, a prototype of directed networks. A specific context
could, for example, be the situation when companies invest
money in other companies. If company A has invested in
company B, there is a link from A to B. For example, A may
be a big company with a large turnover represented by a lot
of in- and out-links, whereas B could be a small company
with just a few links. The friendly merging describes how
companies buy up each other and new companies are started
from scratch until a steady state has been reached where the
average size of the companies is constant.

The specific local update rule for friendly merging is il-
lustrated in Fig. 1 and can be described as follows.

(a) Choose a node. Randomly pick a node, i, with in- and
out-degree k;;, and k; ;.

(b) Choose a node to merge with. Randomly pick one of
its neighbors, j, with in- and out-degree k;;, and k; .
through one of the out-links of i.

(c) Merging step. Move all the links (in- and out-links)
connected to j, so that they connect to i instead. Node i will

then have the in- and out-degrees k;jn=K; in+k; in—Ncommon,in
and  k; oue=k; out+Kj out—Ncommonou»  T€SPectively.  Here
Neommon,in/our 18 the number of links that the nodes i and j
have to common neighbors (including the one to each other).
Since only at most one link of each direction between two

different nodes is allowed, these in- and out-degrees disap-
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FIG. 1. (Color online) Friendly merging: (a) Node i is randomly picked to merge with one of its out-link neighbors, j. (b) Node i gets
all the links that are connected to j except the ones they have in common and the ones pointing to each other (Neommon.in @1d Neommon,out)s

so one node and two links are taken away from the system shown in the figure. Node 7 thus gets the in- and out-degree, k;;,=k; jn+kjin

~Ncommon.in and ];i,outzki,out"'kj,out_Ncommon,outa respectively. (¢c) One node and two links are put in at random to keep the system size

constant.

pear. This reflects the efficiency gain in the merging step.

(d) Balance step. Add a new node with degree zero, k;;,
=k; o,t=0, and then add r links that connect randomly into
the system. This step ensures that the number of nodes is
constant and that the number of links reaches an equilibrium
value after going through the updating steps many times. The
equilibrium value of the links is thus controlled by the pa-
rameter r. In equilibrium, r=(N ommon.in*+Ncommon.out)-

Here, “()” denote the average. We start from an Erd&s-
Rényi (ER) network (see, e.g., [3]) and apply the merging
update until equilibrium is obtained. We use the size N
=1000 nodes for the simulations of model networks in order
to facilitate comparison with the real networks in the paper,
which have approximately this size. For r=3, we obtain
(kiny=(kouy =4. Figure 2 gives the characteristics of this
merging network obtained by averaging over many equilib-
rium networks (for the merging models, we use 100 net-
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FIG. 2. (Color online) Friendly merging. (a) Cumulative degree
distribution P(=k)=[{dkP(k) for y=2.3 and (kyy)=(koy)=~4.0
(corresponding to r=3 in the update rule). (b) Demonstration that
(ki) out=kout t0 good approximation. (c) Demonstration that the
spread goes as Sm(lc‘,ut)mlc;fu/2 to good approximation; full line Eq.
(3) and data points from simulations. The cutoff for large k., is a
finite-size effect. (d) Proportion of links with in-, out-, and both in-

and out-links.

works whereas in model A and B we use 10 000 networks).
As demonstrated by Fig. 2(a), the in- and out-degree distri-
butions P (kyy) = Pin(ki,) are equal and “scale-free” as, i.e.,
can be approximated by a power law over a substantial range
[see Fig. 2(a)] [7]. The scale-freeness is a truly nontrivial
emergent property whereas the fact that P, (k) is equal to
P;,(k;,) basically reflects the symmetry between in- and out-
links in the friendly merging scheme [note, however, the
slight asymmetry introduced by choosing the neighbor link
from an out-link, discussed in connection with Fig. 2(d)].
Figure 2(b) demonstrates a second nontrivial property: the
average number of in-degrees (k;,) for nodes with a fixed
out-degree k,, is closely equal to k. By contrast, the ran-
dom ER network gives a horizontal line (ki,)ou={kin)-

In order to get some insight into the origin of this second
nontrivial property, we introduce the concept of a random
scale-free network: The assumption is that the total number
of links k;,+k,, on a node is given by the same distribution
as k;, and k.. This assumption is fulfilled in case of friendly
merging. Next we assume that the numbers of in- and out-
links on a node of size k are randomly distributed and that
the distribution for k is scale-free. The relation between in-
and out-degrees on a node can then be understood by ignor-
ing the constraint implicit in having a connected network.
We instead consider the nodes as boxes of certain sizes (de-
grees), k, and with the size distribution P(k). We then put in
red and blue balls (respectively, in- and out-links) into the
boxes until they are filled. In such a case, the average num-
ber of in-links (red balls) on a node with precisely &, out-
links (blue balls), (ki,);_ . is just given in terms of the bino-
mial distribution B(k;,,k) i.e., the probability to get k;, tails
when tossing a coin k=k;,+k,, times,

kmax
> Bk = kous k) P(K) (k = ko)
k:kou
<kin>k0ul = tkmax s (1)
> Bk = kou, k) P(K)
k=k

out

where k is the total number of links attached to a node (so
that kj,=k—k,,), and ky,, is the largest node in the network.
Here P(k=kj,+k,,) is the probability of picking a node of
size k. For the case of P(k)«1/k”, one then finds (k;,)
= ko (the analytical solution for y=2 gives (k;,) =k, —2 to
leading order of large k).
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FIG. 3. (Color online) Hostile merging. (a) Node i is randomly picked to merge with one of its out-links neighbors, j. (b) Node i gets all
the out-links that are connected to j except the ones i and j have in common neighbors. The in-links to j are randomly rewired to other nodes

(excluding ). This means that one node and two links are taken away from the system. Node i thus gets the in- and out-degree, l:i’m=k,-’in and

ki out=ki out+k;j out—Neommon,out- (c) One node and two links are put in at random to keep the system size constant.

We pursue this property of random scale-free networks
one step further and study the spread of the k;, links for the
nodes with a given number of k. For this spread we use the
measure

2 k- Ckin |
(kinlkoul)

Sinlkou) = 2
1n( out) Nkum<kin>k0u[ ( )

Using the same simplification as in Eq. (1) then gives

fmax |k = keoue = Ckink_ |

> Blk- kout,k)P(k)%

k=koy in/koy

Sin(kout) = I © : (3)

max

> Bk~ kous k) P(K)
k=k

out

For a random scale-free distribution, this gives S;,(kqy)
Mk;&t/z, whereas for the ER network the spread is indepen-
dent of kg, i.e., Sip(koy) =const. The spread obtained from
friendly merging is plotted in Fig. 2(c) [with the use of Eq.
(2)] together with the analytical result obtained from Eq. (3).
The sharp change in the slope of the analytical result in Fig.
2(c), at large k.. is a finite-size effect. The drop occurs
when kg, =~kya/2. Figures 2(a)-2(c) show that friendly
merging essentially gives rise to a random scale-free net-
work.

Finally, in Fig. 2(d) we give the percentage of nodes with
only in-links, nodes with only out-links, and nodes with both
in- and out-links. One notes that friendly merging gives rise
to a slightly larger percentage of nodes with only in-links
than with only out-links. This asymmetry is caused by al-
ways picking an out-link neighbor in the update rule (a) for
friendly merging. Among the nodes with both in- and out-
links, a total of 12% have double links (a double link, e.g.,
means that companies A and B have mutually invested in
each other).

This constitutes our description of friendly merging and
the characteristics of the directed network it gives rise to.
Next we turn to an alternative local update rule termed hos-
tile merging.

Hostile merging

The alternative update rule, hostile merging, can also be
described in terms of the company analogy: In this case,
company A makes a hostile takeover and acquires all the

assets of company B. The companies that had money in-
vested in B prior to the takeover will not be allowed to have
any control over A. So in this case these companies will be
forced to sell their parts in company B to A and invest the
money elsewhere. In terms of networks, this means that a
node gets all the out-links from the neighbor it merges with.
This can be translated into the following update rule.

(a) Choose a node. Same as for friendly merging.

(b) Choose a node to merge with. Same as for friendly
merging.

(¢c) Merging step. Move all the out-links connected to j, so
that they connect to i instead and move all the in-links of j so
that they randomly connect to other nodes (excluding i).
Links sitting between i and j before the merging are deleted.
Node i will then have the in- and out-degrees Igi’in:k,-,in (or
kim=k;in—1, if a link from j to i existed) and k; ou=K;ou
+k; out= Neommon,our» T€SPECtively. Here Negmmon oue 18 the num-
ber of out-links which the nodes i and j have to the same
neighbors.

(d) Balance step. Same as for friendly merging.

The hostile merging update rule is illustrated in Fig. 3,
and in Fig. 4 we present the characteristic features for the
network emerging from this evolution rule.

As seen from Fig. 4, networks arising from hostile merg-
ing are characterized by a broad “scale-free”-like out-degree
distribution and an ER-like in-degree distribution with no
correlation between the number of in- and out-degrees on the
nodes with a given number of in-or out-degrees. There is
again a large portion of links with both out- and in-degrees
(52% as compared to 69% for friendly merging). However,
the asymmetry between links with only in- and only out-
degrees is huge for hostile merging (45% for only in and
3.2% for only out) and the proportion of nodes with double
links is 14%.

The networks arising from hostile merging and friendly
merging are thus very different. The common feature is ba-
sically that the out-degree distribution is scale-free-like in
both cases. We will argue in the following that the two dif-
ferent types of networks arising from friendly and hostile
merging can in fact be viewed as two prototypes of directed
networks connected to scale-freeness.

III. MODELS A AND B

So far we have constructed two local evolution rules and
found that the two types of emerging directed networks both
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FIG. 4. (Color online) Hostile merging. (a) Cumulative degree
distribution P, (=k.,) and Pi,(=k;,) obtained for (k)=3.8 (this
particular value was chosen in order to facilitate comparison with
the yeast network in Fig. 8), which corresponds to r=1.5 in the
local update (the dotted straight line has the slope —1.7). (b) No
correlations between (ki )oy and kg, for the kg, nodes because
(kin)our={kin) independent of ky,. (c) Also the spread Sj,(koy) is
independent of k. (d) Proportion of links with in-, out-, and both
in- and out-links.

display scale-free features but are otherwise different. In this
section, we show that the overall features of these two net-
work types can be connected to two minimalistic random
scale-free network models. We suggest that these two mini-
malistic network models can be viewed as two prototype
models.

Model A

Model A is constructed as follows: We start from a scale-
free undirected connected network with a degree-distribution
P(k)ck™” and with average degree (k) [which means that in
the limit of very large systems (k)=(y—1)/(y-2)]. This
scale-free undirected network is constructed by the Stub al-
gorithm followed by a random rewiring [15-17]. Next we
randomly assign directions to links with equal probability.
Such a network has the following obvious property: The in-
degree and the out-degree distributions are equal, P(k;,)
=P(koy), and both proportional to k~?. Finally, we separately
rewire the in- and out-end of the links randomly without
changing the scale-free distributions. Figure 5(a) shows that
the resulting distributions are indeed equal and scale-free.
Figure 5(b) demonstrates that (k;,) =k, (the deviation for
large ko, is a finite-size effect). This explicitly links this
relation to networks where the in- and out-degree distribu-
tions are both scale-free and equal and an average is taken
over a large ensemble of networks [as explained in connec-
tion with Eq. (1)]. In the same way, Fig. 5(c) connects the
spread predicted by Eq. (3) for equal scale-free in- and out-
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FIG. 5. (Color online) Model A. (a) Cumulative degree distri-
bution P(=k)=[;dkP(k) for y=~2.3 and (k)=~1.9. (b) Demonstra-
tion that (kip)ou=kou (An ER network has instead (ki,)ou=(k)/2.)
(c) Demonstration that the spread goes as Siy (ko) % k5./. Full line,
Eq. (3) and data points from simulations. The cutoff for large k,, is
a finite-size effect. (d) Proportion of links with in-, out-, and both

in- and out-links.

degree distributions to the result obtained from simulation of
model A [full curve in Fig. 5(c), the inset shows the corre-
sponding result for an ER network]. We find that model A is
a random minimalistic model with the essential characteris-
tics of the friendly merging networks (compare Fig. 2). Fig-
ure 5(d) gives the proportions of nodes with only in-, only
out-, and both in- and out-links. Comparing with friendly
merging in Fig. 2(d), we notice that the number of only in-
and only out-nodes is somewhat larger for model A and that
there is a perfect symmetry in contrast to the slight asymme-
try discussed in connection with friendly merging. Our con-
clusion is hence that friendly merging shares its overall char-
acteristics with model A.

Model B

The minimalistic model B, displaying common character-
istics with the hostile merging networks, is constructed as
follows: We again start from a scale-free distribution of the
total node degree P(k) k™" (the total degree distribution is
the same as for hostile merging for better comparison) and
randomly assign directions on the links. Next we make a
random rewiring on the links keeping the out-degree distri-
bution intact, but rewiring without this restriction for the
in-degrees. This means that P(k,,) k), whereas the in-
degree distribution becomes ER-like. Model B is conse-
quently by construction a prototype of a random model
where the out-degree is scale-free and the in-degree is of
ER-type.

The general characteristics of model B is shown in Fig. 6
for y=1.7 and (k)~3.8. Figure 6(a) shows the scale-free
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FIG. 6. (Color online) Model B. (a) Cumulative scale-free de-
gree distribution Py (=k,,) for y=1.7 and (k,,)=~3.8 together
with the ER-like P;,(=k;,). (b) No correlations because (kiy)our
=(k;,) independent of k. (c) The spread S;,(k.,) independent of
kot for the same reason. (d) Proportion of links with in-, out-, and
both in- and out-links.

broad out-degree distribution and the narrow ER-type in-
degree distribution. Figure 6(b) illustrates that there is no
correlation between in- and out-degrees for nodes with a
given fixed number of k.. This follows because by con-
struction the average in-degree on any node is (k;,)=(k)/2
regardless of the number of out-links [compare model A and
Fig. 5(b)]. As a consequence, the spread in Fig. 6(c) is inde-
pendent of k., [compare model A and Fig. 5(c)]. Finally, Fig.
6(d) shows the percentage of in- and out-degrees on the
nodes. By comparing Fig. 6 with Fig. 4, we find that model
B catches the overall features of the hostile merging net-
works.

IV. METABOLIC AND TRANSCRIPTIONAL NETWORKS

Do the two prototypical properties A and B found in, re-
spectively, friendly and hostile merging also show up in real
networks? We demonstrate here that they indeed do, with A
showing up in biological production networks, i.e., metabolic
networks, while B rather is found in information processing
networks like the transcriptional networks.

Metabolic networks

The first example is the average properties of 107 meta-
bolic networks with the average size (N)~940 (data taken
from Ref. [8]). A metabolic network is constructed as fol-
lows: Substrates and products in the metabolism are nodes.
Two nodes are connected if the first substance is a substrate
in a metabolic reaction that produces the other substance.
The links point from the substrate to the product. The data
are obtained as the average over 107 such networks and con-
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FIG. 7. (Color online) Metabolic networks. Average over 107
metabolic networks with data obtained from Ref. [8]. The same
characteristics as for model A and friendly merging. (a) Cumulative
degree distribution P(=k). The dashed straight line has a slope y
=2.3 and (ki) =(koup =4.3. (b) Plot of (ki)oui VS kou Showing that
the data are consistent with (kiy)ou=kKour- (¢) Demonstration that the
spread goes as Sin(kcut)ka;j{z to a reasonable approximation, full
line from Eq. (3) and data points from simulations. The cutoff for
large k, is a finite-size effect. (d) Proportion of links with in-, out-,
and both in- and out-links.

sequently reflect an ensemble average network structure as-
sociated with metabolic networks [18]. Figure 7(a) shows
that, just as for friendly merging and model A, metabolic
networks have P (ko) =Pi,(ki,) and a broad scale-free de-
gree distribution, as was first demonstrated in Ref. [7]. Fur-
thermore, from Figs. 7(b) and 7(c) we conclude that also for
the ensemble average of metabolic networks to a good ap-
proximation the relation (k;,)= k., holds. Also the spread
has a similar decrease as in the case of friendly merging and
model A. In addition, the relative proportions of links on a
node correspond very well for metabolic networks and
friendly merging [compare Figs. 7(d) and 2(d) and notice
that these two networks also have approximately the same
number of average links]. We conclude that the overall struc-
ture of metabolic networks belongs to the same network
class as A and friendly merging.

Transcriptional networks

Figure 8 shows the corresponding analysis for the net-
work of transcriptional protein-protein regulations for yeast
(Saccromyces Cerevisiae, data from Refs. [11,12]). Compar-
ing Figs. 8(a)-8(c), 4(a)-4(c), and 5(a)-5(c) shows the com-
mon feature of a broad out-degree and an ER-like in-degree.
The ER-like character for the in-degree of yeast is empha-
sized by the lack of correlations displayed by Figs. 8(b) and
8(c). Overall we see that transcriptional networks belong to
the class characterized by model B. However, there are also
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FIG. 8. (Color online) Transcription networks for yeast (data
from Refs. [11,12]). The same characteristics as for model B and
hostile merging. (a) Cumulative degree distribution P, (=k,,,) and
P;,(=k;,) showing a broad distribution for the out-degrees (the dot-
ted line is for comparison with hostile merging and has the slope
y=1.7) and an ER-like distribution of in-links. (b) Shows that there
are no correlations between (k) o, and kg for the kg, nodes. (c)
Also the spread S;, (ko) is independent of k. (d) Proportion of
links with in-, out-, and both in- and out-links.

differences: the out-degree for the yeast network is broad but
not very scale-free and the percentages of degrees in Fig.
4(d) on the one hand are significantly different as compared
to hostile merging and model B on the other hand.

V. CONCLUSIONS

We present and characterize two directed network types
emerging from two different local time evolutions called
friendly and hostile merging. It was shown that two minimal-
istic models contain the same overall characteristics as, re-
spectively, the friendly and hostile merging networks. We
compared metabolic and transcription networks from real
data with the two prototypes and found that the properties of
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metabolic networks have the same overall characteristics as
model A and the friendly merging network. However, the
yeast transcriptional network resembled model B and hostile
merging networks. This led us to suggest that friendly and
hostile merging networks represent two distinct classes of
directed networks.

What might be the implication of these results? Even if
friendly merging and metabolic networks are similar, we do
not suggest that the friendly merging evolution rule (which
may be motivated in an economical context) has direct cor-
respondence to the actual evolution of metabolic networks
(which has to do with production handling). The implication
is rather that scale freeness can arise in a variety of explicit
ways. However, it was also shown that an ensemble of ran-
dom scale-free networks brings additional nontrivial proper-
ties like a relation between in- and out-links on a node. Com-
parison between the ensemble average of metabolic networks
implies that this latter property is in fact shared with the
metabolic networks. This imposes restrictions on the evolu-
tion and the correlations of individual metabolic networks.

Since scale-freeness is a common property and since en-
semble averages of real directed networks show strong simi-
larities with random scale-free networks, there obviously is a
need for further distinguishing network measures. In the
present paper, we suggest and discuss one such measure: The
percentage of nodes of a different number of only in-, only
out-, and both in- and out-links [19]. We found a close cor-
respondence between the friendly merging network and the
ensemble average of metabolic networks.

In summary, we uncovered two distinct classes of directed
networks A and B. In the case of friendly and hostile merg-
ing, we suggest that the distinction between A and B might
reflect a difference in economical strategy. For biological
networks we suggest that the distinction instead reflects a
functional design difference associated with handling pro-
duction (metabolic networks) and information processing
(transcriptional networks).
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